(i)	$y = \sqrt{x} \Rightarrow y^2 + 3y - \frac{1}{2} = 0$	B1	for a correct quadratic eqn. in <i>y</i> or \sqrt{x}
	$(2y+3)^2 = 11$	M1	for use of a method for solving a quadratic eqn. (compl ^g . the square, formula, etc.) If candidate fails to obtain a numerical answer for y (correct or not) then M0
	$y = \frac{-3 \pm \sqrt{11}}{2}$	A1	
	$y \ge 0 \implies \sqrt{x} = \frac{\sqrt{11} - 3}{2}$	M1	for clearly choosing the correct root: FT <i>provided</i> they have $1 +_{ve}$ and $1{ve}$ root to choose from
	$x = \left(\frac{\sqrt{11} - 3}{2}\right)^2 \text{ or } \frac{20 - 6\sqrt{11}}{4} \text{ or } 5 - \frac{3}{2}\sqrt{11}$	A1	5
(ii) (a)	$y = \sqrt{x+2}$	M1	for clear indication of this substitution (or equivalent)
	$y^2 + 10y - 24 = 0$	A1	for a correct quadratic
	<i>y</i> or $\sqrt{x+2} = -12$, 2	M1	for solution method of a suitable quadratic
	$y \ge 0 \implies \sqrt{x+2} = 2$ x = 2	M1 A1	for choosing valid root: FT <i>provided</i> they have $1 +_{ve}$ and $1{ve}$ root to choose from 5
(ii) (b)	$y = \sqrt{2x^2 - 8x - 3}$	M1	for clear indication of this substitution (or equivalent)
	$y^2 + 2y - 15 = 0$	A1	for a correct quadratic
	$y \text{ or } \sqrt{2x^2 - 8x - 3} = -5, 3$	M1	for solution of a suitable quadratic
	$y \ge 0 \implies \sqrt{2x^2 - 8x - 3} = 3$	M1	for choosing valid root: FT <i>provided</i> they have $1 +_{ve}$ and $1{ve}$ root to choose from
	$2x^2 - 8x - 3 = 9 \implies x^2 - 4x - 6 = 0$	M1A1	for obtaining <u>and solving</u> a quadratic eqn. in <i>x</i> ; A1 for the correct quadratic 7
	$x = 2 \pm \sqrt{10}$	A1	

 $x = 2 \pm \sqrt{10} \implies x^2 = 14 \pm 4\sqrt{10}$ So $x^2 - 4x - 9 = -3$ & $2x^2 - 8x - 3 = 9$ \Rightarrow (both cases) $-3 + \sqrt{9} = 0$ M1 for checking attempt (for at least one of the answers found) A1A1 one for each clearly shown (with working)

ALTERNATIVELY For validity,
$$2x^2 - 8x - 3 \ge 0$$
 also M1 i.e. $(x-2)^2 \ge \frac{11}{2}$ A1
Since $(x-2)^2 = 10 > \frac{11}{2}$ both solns. valid E1

ALTERNATIVES

(i) $3\sqrt{x} = \frac{1}{2} - x$ and squaring M1 $x^2 - 10x + \frac{1}{4} = 0$ A1 correct quadratic M1 for solution of a suitable quadratic A1 $x = 5 \pm \frac{3}{2}\sqrt{11}$ However, *both* these roots are positive, so the final mark will be E1 for checking both, with working, and correctly discarding the unsuitable answer

(ii) (a) $10\sqrt{x+2} = 22 - x$ and squaring M1 $x^2 - 144x + 284 = 0$ A1 correct quadratic M1 for solution of a suitable quadratic A1 x = 142, 2 E1 for checking both, with working, and correctly discarding the unsuitable answer (e.g. x = 142 gives LHS > 0 but RHS < 0 would suffice)

(ii) (b)
$$\sqrt{2x^2 - 8x - 3} = 9 + 4x - x^2$$
 and squaring M1 $x^4 - 8x^3 - 4x^2 + 80x + 84 = 0$ A1 correct quartic
 $(x-2)^4 - 28(x-2)^2 + 180 = 0$ M1A1 $\Rightarrow (x-2)^2 = 10, 18$ M1A1
Now $\sqrt{2}\sqrt{(x-2)^2 - \frac{11}{2}} = 13 - (x-2)^2 \Rightarrow \frac{11}{2} \le (x-2)^2 \le 13$ M1A1A1 so the only valid solutions arise from $(x-2)^2 = 10$ and $x = 2 \pm \sqrt{10}$ A1

However, I cannot see candidates making this approach work. **M1A1** for getting the correct quartic may be all they can reasonably get. Attempts to find linear factors (by the *Factor Theorem*, for instance) will go nowhere.

Some may attempt to find a pair of quadratic factors: $(x^2 + Ax + B)(x^2 + Cx + D) \equiv x^4 + (A+C)x^3 + (AC + B + D)x^2 + (AD + BC)x + BD = 0$ and compare terms (A + C = -8, AC + B + D = -4, AD + BC = 80 and BD = 84) but I do not want them to have any marks <u>unless</u> they can get to (by guessing/verifying ... divine inspiration?) $(x^2 - 4x - 6)(x^2 - 4x - 14)$, at which point I would award them the next **M1A1** & **M1A1**. They now have four answers to check for and I would propose a **B1** for each correctly checked (with working) and accepted/rejected appropriately.

- **G1** Lots of "unit" segments
- $\begin{array}{c} {\rm LH} \\ {\rm RH} \end{array} \underset{end \ clearly}{ \left\{ \begin{array}{c} {\rm included} \\ {\rm excluded} \end{array} \right. } \end{array}$
- **G1** Each segment looks like a portion of a reciprocal curve
- **G1** Essentially correct $0 \le x \le 3$
- **G1** Essentially correct $-3 \le x < 0$

Ignore endpoint issues for these last two Gs

(ii) Note that, for
$$n \le x < n+1$$
, $\lfloor x \rfloor = n$ so $f(x) = \frac{n}{x}$. Also, $\frac{n}{n+1} < f(x) \le 1$ for $x > 0$, and $f(x) \ge 1$ for $x < 0$, so ...
 $f(x) = \frac{7}{12}$ only in [1, 2). E1 Sketch may show it so
 $f(x) = \frac{1}{x} = \frac{7}{12} \implies x = \frac{12}{7}$ B1 B0 if extra answers appear

Similarly,
$$\frac{n}{n+1} > \frac{17}{24} \implies 24n > 17n + 17 \implies n > \frac{2^3}{7}$$
, i.e. $n \ge 3$; so $f(x) = \frac{17}{24}$ only in [1, 2) and [2, 3].

In [1, 2),
$$f(x) = \frac{1}{x} = \frac{17}{24} \implies x = \frac{24}{17}$$
 B1
In [2, 3), $f(x) = \frac{2}{x} = \frac{17}{24} \implies x = \frac{48}{17}$ B1

Give max. B1 if extra answers appear

2

	Now, for $x < 0$, $1 \le f(x) < \frac{n}{n+1}$, and $\frac{-n}{-n-1}$ f(-3) = 1 so no solution in $[-4, -3)$		⇒ $-4n - 4 > -3n$ ⇒ $n < -4$; so $f(x) = \frac{4}{3}$ only in [-4, -3), [-3, -2), [-2, -1) and [-1, 0). Possibly implicitly, if just not there	
	In [-3, -2), $f(x) = \frac{-3}{x} = \frac{4}{3} \implies x = -\frac{9}{4}$	B1		
	In [-2, -1), $f(x) = \frac{-2}{x} = \frac{4}{3} \implies x = -\frac{3}{2}$			
	In [-1, 0), $f(x) = \frac{-1}{x} = \frac{4}{3} \implies x = -\frac{3}{4}$	B 1	Give max. B1B1 if extra answers appear	4
(iii)	$\frac{n}{n+1} > \frac{9}{10}$ for $n > 9$ so			
	$f(x_{\max}) = \frac{9}{10}$ in [8, 9)	E1		2
	and $f(x) = \frac{8}{x} = \frac{9}{10} \implies x = \frac{80}{9}$	B1	NB f(10) = 1, so $x \neq 10$	
	f(x) = c has exactly <i>n</i> roots for			
	for $x > 0$: $\frac{n}{n+1} < c \le \frac{n+1}{n+2}$	B1B1	LHS; RHS	
	for $x < 0$: $\frac{n+1}{n} \le c < \frac{n}{n-1}, n \ge 2$	B1B1	LHS; RHS	
	$c \ge 2$, $n = 1$	B1		5

(i)	$X * Y = Y * X \iff \lambda \mathbf{x} + (1 - \lambda)\mathbf{y} = \lambda \mathbf{y} + (1 - \lambda)\mathbf{x}$ $\Leftrightarrow (2\lambda - 1)(\mathbf{x} - \mathbf{y}) = 0$	M1 M1	Including correct $Y * X = \lambda \mathbf{y} + (1 - \lambda) \mathbf{x}$	3
	(Since $\mathbf{x} \neq \mathbf{y}$) $\lambda = \frac{1}{2}$	A1		J
(ii)	$(X * Y) * Z = \lambda (\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) + (1 - \lambda)\mathbf{z}$	M1		
	$= \lambda 2\mathbf{x} + \lambda(1-\lambda)\mathbf{y} + (1-\lambda)\mathbf{z}$	A1		
	and			
	$X * (Y * Z) = \lambda \mathbf{x} + (1 - \lambda)[\lambda \mathbf{y} + (1 - \lambda)\mathbf{z}]$	M1		
	$= \lambda \mathbf{x} + \lambda (1 - \lambda) \mathbf{y} + (1 - \lambda) 2 \mathbf{z}$	A1		
	$(X * Y) * Z - X * (Y * Z) = \lambda(1 - \lambda)(\mathbf{x} - \mathbf{z})$	M1		6
	The two are distinct provided $\lambda \neq 0$, 1 or $X \neq Z$	A1		Ο
(ii)	$(X * Y) * Z = \lambda^2 \mathbf{x} + \lambda(1 - \lambda)\mathbf{y} + (1 - \lambda)\mathbf{z}$			
	$(X * Z) * (Y * Z) = [\lambda \mathbf{x} + (1 - \lambda)\mathbf{z}] * [\lambda \mathbf{y} + (1 - \lambda)\mathbf{z}]$ $= \lambda^2 \mathbf{x} + \lambda(1 - \lambda)\mathbf{z} + \lambda(1 - \lambda)\mathbf{y} + (1 - \lambda)^2 \mathbf{z}$	M1		

 $= \lambda^2 \mathbf{x} + \lambda(1-\lambda)\mathbf{y} + (1-\lambda)\mathbf{z}$

A1 (and the two are always equal)

$$X * (Y * Z) = \lambda \mathbf{x} + \lambda (1 - \lambda) \mathbf{y} + (1 - \lambda)^{2} \mathbf{z}$$

$$(X * Y) * (X * Z) = [\lambda \mathbf{x} + (1 - \lambda) \mathbf{y}] * [\lambda \mathbf{x} + (1 - \lambda) \mathbf{z}] \qquad M1$$

$$= \lambda^{2} \mathbf{x} + \lambda (1 - \lambda) \mathbf{y} + \lambda (1 - \lambda) \mathbf{x} + (1 - \lambda)^{2} \mathbf{z}$$

$$= \lambda^{2} \mathbf{x} + \lambda (1 - \lambda) \mathbf{y} + (1 - \lambda) \mathbf{z} \qquad A1$$
Hence $X * (Y * Z) = (X * Y) * (X * Z)$ E1 Conclusion must be stated (before or after proof) 5

$$\int_{a}^{\frac{\pi}{2}} \int_{a}^{\frac{\pi}{2}} \int_{a}^{\frac{\pi}{$$

(i)	For $k = 0$: $x^2 + 3x + y^2 + y = 0$ $(x + \frac{3}{2})^2 + (y + \frac{1}{2})^2 = (\frac{1}{2}\sqrt{10})^2$ giving a CIRCLE thro' (0, 0), (0, -1) & (-3, 0)	M1 G1 B1B1	for completing the square for both <i>x</i> and <i>y</i> for a circle drawn passing thro' the origin; other 2 intercepts correct (noted on sketch or separately)	4
(ii)	For $k = \frac{10}{3}$: $(3x + y)(x + 3y + 3) = 0$ giving a LINE-PAIR Lines $y = -3x$ & $x + 3y = -3$ 1^{st} line thro' <i>O</i> with ${ve}$ gradient	B1 G1 B1	Must be the full thing (no marks for just factorising the given quadratic) for two (intersecting) lines drawn Statement of eqns. not actually required	
	2^{nd} line not thro' <i>O</i> with ${ve}$ gradient thro' (0, -1) & (-3, 0)	M1 A1	for both stated or noted on sketch	5

(iii) For
$$k = 2$$
: $(x + y)^2 + 3x + y = 0$
When $\theta = 45^\circ$,

If red curve does not appear ... G3 for purple curve & blue line correct G1 for obviously rotated 45° c/w G0 for anything else

$$= \begin{pmatrix} 2m+1\\ 0 \end{pmatrix} + \begin{bmatrix} 2m\\ 0 \end{pmatrix} + \begin{pmatrix} 2m\\ 1 \end{bmatrix} + \begin{bmatrix} 2m-1\\ 1 \end{pmatrix} + \begin{pmatrix} 2m-1\\ 2 \end{bmatrix} + \dots + \begin{bmatrix} m+1\\ m-1 \end{pmatrix} + \begin{pmatrix} m+1\\ m-1 \end{pmatrix} + \begin{pmatrix} m\\ m \end{pmatrix} M1 \quad \text{for suitable pairings (clear)}$$

$$= \begin{pmatrix} 2m+2\\ 0 \end{pmatrix} + \begin{bmatrix} 2m+1\\ 1 \end{bmatrix} + \begin{bmatrix} 2m\\ 2 \end{bmatrix} + \dots + \begin{bmatrix} m+2\\ m \end{bmatrix} + \begin{pmatrix} m+1\\ m+1 \end{pmatrix} M1 \quad \text{for use of first result, (*)}$$
using the result (*) from above and since
$$\begin{pmatrix} 2m+1\\ 0 \end{pmatrix} = \begin{pmatrix} 2m+2\\ 0 \end{pmatrix} = \begin{pmatrix} m\\ m \end{pmatrix} = \begin{pmatrix} m+1\\ m+1 \end{pmatrix} = 1 M1 \quad \text{for noting the equality of the } \frac{mn}{2} M1 = \sum_{j=0}^{m+1} \begin{pmatrix} 2(m+1)-j\\ j \end{pmatrix} = B_{2m+2} M1 \quad \text{for noting the equality shown}$$

For *n* odd, writing
$$n = 2m + 1 \dots$$

$$B_{2m+1} + B_{2m+2} = \begin{pmatrix} 2m+1\\0 \end{pmatrix} + \begin{pmatrix} 2m\\1 \end{pmatrix} + \begin{pmatrix} 2m-1\\2 \end{pmatrix} + \dots + \begin{pmatrix} m+2\\m-1 \end{pmatrix} + \begin{pmatrix} m+1\\m \end{pmatrix}$$

$$= \begin{pmatrix} 2m+2\\0 \end{pmatrix} + \begin{pmatrix} 2m+1\\1 \end{pmatrix} + \begin{pmatrix} 2m\\2 \end{pmatrix} + \begin{pmatrix} 2m-1\\3 \end{pmatrix} + \dots + \begin{pmatrix} m+2\\m \end{pmatrix} + \begin{pmatrix} m+1\\m+1 \end{pmatrix}$$

$$= \begin{pmatrix} 2m+2\\0 \end{pmatrix} + \begin{bmatrix} (2m+1\\0 \end{pmatrix} + \begin{pmatrix} 2m+1\\1 \end{bmatrix} \end{bmatrix} + \begin{bmatrix} (2m\\1 \end{pmatrix} + \begin{pmatrix} 2m\\2 \end{bmatrix} + \dots + \begin{bmatrix} \begin{pmatrix} m+2\\m-1 \end{pmatrix} + \begin{pmatrix} m+2\\m \end{pmatrix} \end{bmatrix} + \begin{bmatrix} \begin{pmatrix} m+1\\m \end{pmatrix} + \begin{pmatrix} m+1\\m+1 \end{pmatrix} \end{bmatrix}$$

$$= \begin{pmatrix} 2m+3\\0 \end{pmatrix} + \begin{bmatrix} \begin{pmatrix} 2m+2\\1 \end{bmatrix} \end{bmatrix} + \begin{bmatrix} \begin{pmatrix} 2m+1\\2 \end{pmatrix} \end{bmatrix} + \begin{bmatrix} \begin{pmatrix} 2m+1\\2 \end{pmatrix} \end{bmatrix} + \dots + \begin{bmatrix} \begin{pmatrix} m+3\\m \end{pmatrix} \end{bmatrix} + \begin{pmatrix} m+2\\m+1 \end{pmatrix}$$
M1 for use of first result, (*)
using the result (*) from above and since $\begin{pmatrix} 2m+2\\0 \end{pmatrix} = \begin{pmatrix} 2m+3\\0 \end{pmatrix} = 1$
M1 for noting the equality of the $\frac{m+2}{m}$

$\sum_{j=0}^{m+1} \binom{2(m+1)+1-j}{j} = B_{2m+3}$		A1 Legitimately shown
$B_0, B_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1, 1$ Evaluating $F_0, F_1 \& F2$	B1 B1	Evaluating B_0 , B_1 Both sides must be evaluated, not just stated
Statement that $B_n = F_{n+1}$ For a clear justification of result (e.g. inductively) (i.e. comment that since $B_0 = F_1$, $B_1 = F_2$ and $B_n \& F_n$ satisfy the	B1 E1 he same	At any point recurrence relation, we must have $B_n = F_{n+1}$ for all n)

(i)
$$y = ux \Rightarrow \frac{dy}{dx} = u + x \frac{du}{dx}$$

 $\Rightarrow u + x \frac{du}{dx} = \frac{1}{u} + u$
 $\Rightarrow \int u \, du = \int \frac{1}{x} \, dx$
 $\Rightarrow \frac{1}{2}u^2 = \frac{y^2}{2x^2} = \ln x \quad (+C)$
 $\Rightarrow y^2 = x^2(2\ln x + 2C)$
 $x = 1, y = 2$ substd. to determine C
 $\Rightarrow y = x\sqrt{2\ln x + 4}$

- **B1**
- M1 substituted in
- M1 variables separated and integration attempted
- **M1** substituted back for *x* and *y*
- **M1** C = 2 (the lack of a constant of integration earlier \Rightarrow M0 here)

ANSWER GIVEN (all working and signs must be correct throughout)

(ii) ALTERNATIVE

 $2ux + x^2 \frac{du}{dx} = \frac{1}{ux} + 2ux$ **B1M1** $\frac{dy}{dx}$ correct (LHS); full substitution into given d.e. $y = ux^2$ used to get $\Rightarrow \int u \, \mathrm{d}u = \int \frac{1}{x^3} \, \mathrm{d}x$ variables separated and integration attempted **M1** $\Rightarrow \frac{\frac{1}{2}u^2}{2x^2} = \frac{-1}{2x^2} \left(+ \frac{1}{2}C \right)$ x = 1, y = 2 (u = 2) substd. to find *C* C = 15 (the lack of a constant of integration earlier \Rightarrow M0 here) **M1** $\frac{y^2}{y^4} = 5 - \frac{1}{y^2}$ for eliminating *u* **M1** $y = x\sqrt{5x^2 - 1}$ A1 No need to justify choice of $+_{ve}$ square-root, but don't allow \pm for $x > \frac{1}{\sqrt{5}}$ **FT** sensible domains (provided x > 0) **B1**

(iii)
$$y = ux^2$$
 used to get

$$\begin{aligned}
2ux + x^2 \frac{du}{dx} = \frac{1}{u} + 2ux & \frac{dy}{dx} \text{ correct (LHS); full substitution into given d.e.} \\
\Rightarrow \int u \, du = \int \frac{1}{x^2} \, dx & \text{M1} \quad \text{variables separated and integration attempted} \\
\Rightarrow \frac{1}{2}u^2 = \frac{-1}{x} (+D) \\
x = 1, y = 2 (u = 2) \text{ substd. to find } D & \text{M1} \quad D = 3 \text{ (the lack of a constant of integration earlier} \Rightarrow M0 here)} \\
& \frac{y^2}{x^4} = 6 - \frac{2}{x} & \text{M1} \quad \text{for eliminating } u \\
y = x\sqrt{6x^2 - 2x} \quad \text{or} \quad y = x\sqrt{2x}\sqrt{3x - 1} & \text{A1} \quad \text{No need to justify choice of } +_{ve} \text{ square-root, but don't allow } \pm \\
& \text{for } x > \frac{1}{3} & \text{B1} & \text{FT sensible domains (provided } x > 0)
\end{aligned}$$

(ii)
$$fg(x) = |x| \text{ or } \sqrt{x^2} \quad \mathbb{R} \qquad y \ge 0$$

 $gf(x) = |x| \text{ or } \sqrt{x^2} \quad |x| \ge 1 \qquad y \ge 1$

B1 B1 Allow $\begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$ but not or $\pm x$

B1 B1

→_X

Х

In each case, 1st B1 for the fn. & 2nd B1 for both domain and range **OR** 1st B1 for both domains correct, 2nd B1 for both ranges correct

- **G1** Starts at (1, 1) noted or clear on sketch
- **G1** Going upwards $(\rightarrow \infty)$
- **G1** Approaching asymptote y = 2x (eqn. must be given somewhere)
 - NB I will correct the diagram so it is the graph of a *function*

0

- G1 Two branches
- **G1** (1, 1) and (-1, -1) noted or clear on sketch
- **G1** Branch in Q1 approaches (from above) asymptote y = 0 (or "*x*-axis") must be noted somewhere
- **G1** Branch in Q3 approaches asymptote (from above) y = 2x must be noted somewhere

7

Domain of kh is $x \ge 1$ B1Range of h is $y \ge 1 \Rightarrow$ Range of kh is $0 < y \le 1$ M1A1

3