SI 2013 Mark Scheme Q1

(i) $y=\sqrt{x} \Rightarrow y^{2}+3 y-\frac{1}{2}=0$
$(2 y+3)^{2}=11$
$y=\frac{-3 \pm \sqrt{11}}{2}$
$y \geq 0 \Rightarrow \sqrt{x}=\frac{\sqrt{11}-3}{2}$
$x=\left(\frac{\sqrt{11}-3}{2}\right)^{2} \quad \frac{20-6 \sqrt{11}}{4}$ or $5-\frac{3}{2} \sqrt{11} \quad$ A1
(ii) (a) $y=\sqrt{x+2}$
$y^{2}+10 y-24=0$
y or $\sqrt{x+2}=-12,2$
$y \geq 0 \Rightarrow \sqrt{x+2}=2$
$x=2$
M
A1

M1 for clear indication of this substitution (or equivalent)
A1 for a correct quadratic
M1 for solution method of a suitable quadratic

B1 for a correct quadratic eqn. in y or \sqrt{x}
M1 for use of a method for solving a quadratic eqn. (compl ${ }^{\text {² }}$. the square, formula, etc.) If candidate fails to obtain a numerical answer for y (correct or not) then M0

M1 for clearly choosing the correct root: FT provided they have $1{ }_{\text {ve }}$ and $1-{ }_{-\mathrm{ve}}$ root to choose from
(ii) (b) $y=\sqrt{2 x^{2}-8 x-3}$
$y^{2}+2 y-15=0$
y or $\sqrt{2 x^{2}-8 x-3}=-5,3$
$y \geq 0 \Rightarrow \sqrt{2 x^{2}-8 x-3}=3$
$2 x^{2}-8 x-3=9 \Rightarrow x^{2}-4 x-6=0$
$x=2 \pm \sqrt{10}$

M1 for clear indication of this substitution (or equivalent)
A1 for a correct quadratic
M1 for solution of a suitable quadratic
M1 for choosing valid root: FT provided they have $1+_{\text {ve }}$ and $1-$ ve root to choose from
M1A1 for obtaining and solving a quadratic eqn. in x; A1 for the correct quadratic
$x=2 \pm \sqrt{10} \Rightarrow x^{2}=14 \pm 4 \sqrt{10}$
M1 for checking attempt (for at least one of the answers found)
so $x^{2}-4 x-9=-3 \& 2 x^{2}-8 x-3=9$
\Rightarrow (both cases) $-3+\sqrt{9}=0$
A1A1 one for each clearly shown (with working)
ALTERNATIVELY For validity, $2 x^{2}-8 x-3 \geq 0$ also M1 i.e. ${ }^{(x-2)^{2} \geq \frac{11}{2}}$ A1

$$
\text { Since }(x-2)^{2}=10>\frac{11}{2} \text { both solns. valid E1 }
$$

ALTERNATIVES

(i)
$3 \sqrt{x}=\frac{1}{2}-x$ and squaring M1 $\quad x^{2}-10 x+\frac{1}{4}=0$ A1 correct quadratic \quad M1 for solution of a suitable quadratic \quad A1 $x=5 \pm \frac{3}{2} \sqrt{11}$
However, both these roots are positive, so the final mark will be E1 for checking both, with working, and correctly discarding the unsuitable answer
(ii) (a) $10 \sqrt{x+2}=22-x$ and squaring M1 $\quad x^{2}-144 x+284=0$ A1 correct quadratic \quad M1 for solution of a suitable quadratic \quad A1 $x=142,2$

E1 for checking both, with working, and correctly discarding the unsuitable answer (e.g. $x=142$ gives LHS >0 but RHS <0 would suffice)
(ii) (b) $\sqrt{2 x^{2}-8 x-3}=9+4 x-x^{2}$ and squaring M1 $x^{4}-8 x^{3}-4 x^{2}+80 x+84=0$ A1 correct quartic
$(x-2)^{4}-28(x-2)^{2}+180=0$ M1A1 $\Rightarrow(x-2)^{2}=10,18$ M1A1
Now $\sqrt{2} \sqrt{(x-2)^{2}-\frac{11}{2}}=13-(x-2)^{2} \Rightarrow{ }^{\frac{11}{2} \leq(x-2)^{2} \leq 13}$ M1A1A1 so the only valid solutions arise from $(x-2)^{2}=10$ and $x=2 \pm \sqrt{10}$ A1

However, I cannot see candidates making this approach work. M1A1 for getting the correct quartic may be all they can reasonably get.
Attempts to find linear factors (by the Factor Theorem, for instance) will go nowhere.
Some may attempt to find a pair of quadratic factors: $\left(x^{2}+A x+B\right)\left(x^{2}+C x+D\right) \equiv x^{4}+(A+C) x^{3}+(A C+B+D) x^{2}+(A D+B C) x+B D=0$ and compare terms $(A+C=-8, \quad A C+B+D=-4, \quad A D+B C=80$ and $B D=84)$ but I do not want them to have any marks unless they can get to (by guessing/verifying ... divine inspiration?) $\left(x^{2}-4 x-6\right)\left(x^{2}-4 x-14\right)$, at which point I would award them the next M1A1 \& M1A1.
They now have four answers to check for and I would propose a B1 for each correctly checked (with working) and accepted/rejected appropriately.

SI 2013 Mark Scheme Q2

G1 Lots of "unit" segments
G1 $\left.\begin{array}{l}\mathrm{LH} \\ \mathrm{RH}\end{array}\right\}$ end clearly $\left\{\begin{array}{l}\text { included } \\ \text { excluded }\end{array}\right.$
G1 Each segment looks like a portion of a reciprocal curve
G1 Essentially correct $0 \leq x \leq 3$

G1 Essentially correct $-3 \leq x<0$

Ignore endpoint issues for these last two Gs
(ii) Note that, for $n \leq x<n+1,\lfloor x\rfloor=n$ so $\mathrm{f}(x)=\frac{n}{x}$. Also, $\frac{n}{n+1}<\mathrm{f}(x) \leq 1$ for $x>0$, and $\mathrm{f}(x) \geq 1$ for $x<0$, so ...
$\mathrm{f}(\mathrm{x})=\frac{7}{\frac{7}{12}}$ only in $[1,2)$.
E1 Sketch may show it so
$\mathrm{f}(x)=\frac{1}{x}=\frac{7}{12} \Rightarrow x=\frac{12}{7}$
B1 B0 if extra answers appear

Similarly, $\frac{n}{n+1}>\frac{17}{24} \Rightarrow 24 n>17 n+17 \Rightarrow n>2 \frac{3}{7}$, i.e. $n \geq 3$; so $f(x)=\frac{17}{24}$ only in $[1,2)$ and $[2,3)$.

In [1, 2), $\mathrm{f}(x)=\frac{1}{x}=\frac{17}{24} \Rightarrow x=\frac{24}{17}$
B1
In $[2,3), \mathrm{f}(x)=\frac{2}{x}=\frac{17}{24} \Rightarrow x=\frac{48}{17}$
B1 Give max. B1 if extra answers appear
2

Now, for $x<0, \quad 1 \leq \mathrm{f}(x)<\frac{n}{n+1}$, and $\frac{-n}{-n-1}<\frac{4}{3} \Rightarrow-4 n-4>-3 n \Rightarrow n<-4$; so $\mathrm{f}(x)=\frac{4}{3}$ only in $[-4,-3),[-3,-2)$, $[-2,-1)$ and $[-1,0)$.
$\mathrm{f}(-3)=1$ so no solution in $[-4,-3) \quad$ B1 Possibly implicitly, if just not there
In $[-3,-2), \quad \mathrm{f}(x)=\frac{-3}{x}=\frac{4}{3} \Rightarrow x=-\frac{9}{4}$
B1
$\operatorname{In}[-2,-1), \quad \mathrm{f}(x)=\frac{-2}{x}=\frac{4}{3} \Rightarrow x=-\frac{3}{2}$
B1
In $[-1,0), \mathrm{f}(x)=\frac{-1}{x}=\frac{4}{3} \Rightarrow x=-\frac{3}{4}$
B1 Give max. B1B1 if extra answers appear
(iii) $\frac{n}{n+1}>\frac{9}{10}$ for $n>9$ so ...

$$
\begin{array}{ll}
\mathrm{f}\left(x_{\max }\right)=\frac{9}{10} \text { in }[8,9) & \text { E1 } \\
\text { and } \mathrm{f}(x)=\frac{8}{x}=\frac{9}{10} \Rightarrow x=\frac{80}{9} & \text { B1 } \quad \text { NB } \mathrm{f}(10)=1, \text { so } x \neq 10
\end{array}
$$

$\mathrm{f}(x)=c$ has exactly n roots for \ldots
for $x>0$: $\frac{n}{n+1}<c \leq \frac{n+1}{n+2}$
B1B1 LHS; RHS
for $x<0$: $\frac{n+1}{n} \leq c<\frac{n}{n-1}, \quad n \geq 2$
B1B1 LHS; RHS

$$
c \geq 2, \quad n=1
$$

B1

SI 2013 Mark Scheme Q3

(i) | $X * Y=Y * X$ | $\Leftrightarrow \lambda \mathbf{x}+(1-\lambda) \mathbf{y}=\lambda \mathbf{y}+(1-\lambda) \mathbf{x}$ | | M1 |
| ---: | :--- | ---: | :--- |
| | $\Leftrightarrow(2 \lambda-1)(\mathbf{x}-\mathbf{y})=\mathbf{0}$ | | Including correct $Y * X=\lambda \mathbf{y}+(1-\lambda) \mathbf{x}$ |
| | | | |

(ii) $\quad(X * Y) * Z=\lambda(\lambda \mathbf{x}+(1-\lambda) \mathbf{y})+(1-\lambda) \mathbf{z} \quad$ M1

$$
=\lambda 2 \mathbf{x}+\lambda(1-\lambda) \mathbf{y}+(1-\lambda) \mathbf{z} \quad \mathbf{A 1}
$$

and
$X *(Y * Z)=\lambda \mathbf{x}+(1-\lambda)[\lambda \mathbf{y}+(1-\lambda) \mathbf{z}] \quad \mathbf{M 1}$

$$
=\lambda \mathbf{x}+\lambda(1-\lambda) \mathbf{y}+(1-\lambda) 2 \mathbf{z} \quad \mathbf{A 1}
$$

$(X * Y) * Z-X *(Y * Z)=\lambda(1-\lambda)(\mathbf{x}-\mathbf{z}) \quad$ M1
The two are distinct provided $\lambda \neq 0,1$ or $X \neq Z \quad$ A1
(ii) $\quad(X * Y) * Z=\lambda^{2} \mathbf{x}+\lambda(1-\lambda) \mathbf{y}+(1-\lambda) \mathbf{z}$

$$
\begin{aligned}
(X * Z) *(Y * Z) & =[\lambda \mathbf{x}+(1-\lambda) \mathbf{z}] *[\lambda \mathbf{y}+(1-\lambda) \mathbf{z}] & \mathbf{M 1} & \\
& =\lambda^{2} \mathbf{x}+\lambda(1-\lambda) \mathbf{z}+\lambda(1-\lambda) \mathbf{y}+(1-\lambda)^{2} \mathbf{z} & & \\
& =\lambda^{2} \mathbf{x}+\lambda(1-\lambda) \mathbf{y}+(1-\lambda) \mathbf{z} & & \text { A1 } \quad \text { (and the two are always equal) }
\end{aligned}
$$

$$
\begin{aligned}
X *(Y * Z)=\lambda \mathbf{x} & +\lambda(1-\lambda) \mathbf{y}+(1-\lambda)^{2} \mathbf{z} \\
(X * Y) *(X * Z) & =[\lambda \mathbf{x}+(1-\lambda) \mathbf{y}] *[\lambda \mathbf{x}+(1-\lambda) \mathbf{z}] \\
& =\lambda^{2} \mathbf{x}+\lambda(1-\lambda) \mathbf{y}+\lambda(1-\lambda) \mathbf{x}+(1-\lambda)^{2} \mathbf{z} \\
& =\lambda^{2} \mathbf{x}+\lambda(1-\lambda) \mathbf{y}+(1-\lambda) \mathbf{z}
\end{aligned}
$$

M1

Hence $X *(Y * Z)=(X * Y) *(X * Z)$
E1 Conclusion must be stated (before or after proof)

For $0<\lambda<1, P_{1}$ cuts $X Y$ in the ratio $(1-\lambda): \lambda$

We see that P_{n} cuts $X Y$ in the ratio

$$
1-\lambda^{n}: \lambda^{n}
$$

$$
P_{n+1}=P_{n} * Y=\lambda \mathbf{p}_{n}+(1-\lambda) \mathbf{y}
$$

$$
=\lambda\left\{\left(\lambda^{n}\right) \mathbf{x}+\left(1-\lambda^{n}\right) \mathbf{y}\right\}+(1-\lambda) \mathbf{y}
$$

$$
=\lambda^{n+1} \mathbf{x}+\left(\lambda-\lambda^{n+1}+1-\lambda\right) \mathbf{y}
$$

$$
=\lambda^{n+1} \mathbf{x}+\left(1-\lambda^{n+1}\right) \mathbf{y}
$$

and proof follows by induction
M1A1 for attempt at an inductive proof; fully correct

SI 2013 Mark Scheme Q4

$\begin{array}{rlrl}\int \tan ^{n} x \cdot \sec ^{2} x \mathrm{~d} x & =\left[\frac{1}{n+1} \tan ^{n+1} x\right] \\ & =\frac{1}{n+1} & \text { M1 } \quad \text { May be done via a substn. such as } t=\tan x \text { (or by "parts") }\end{array}$

$$
\begin{array}{rlrl}
\int \sec ^{n} x \cdot \tan x \mathrm{~d} x & =\int \sec ^{n-1} x \cdot \sec x \tan x & \mathrm{~d} x & \text { M1 } \quad \text { May be done via a substn. such as } s=\sec x \text { (or by parts) } \\
& =\left[\frac{1}{n} \sec ^{n} x\right] & & \text { A1 } \\
& =\frac{(\sqrt{2})^{n}-1}{n} & \text { A1 } & \text { ANSWER GIVEN }
\end{array}
$$

(ii) (a) $\int_{0}^{\pi / 4} x \sec ^{4} x \tan x \quad \mathrm{~d} x=\left[x \cdot \frac{\sec ^{4} x}{4}\right]_{0}^{\pi / 4} \int_{0}^{\pi / 4} \frac{\sec ^{4} x}{4} \mathrm{~d} x \quad$ M1A1A1 \quad for appropriate use of parts; correct $\left(1^{\text {st }}, 2^{\text {nd }}\right)$

$$
=\frac{\pi}{4}-\frac{1}{4} J \quad \text { where } J=\int_{0}^{\pi / 4} \sec ^{4} x
$$

$$
\begin{aligned}
J & =\int_{0}^{\pi / 4} \sec ^{2} x \quad \int_{0}^{\pi / 4} \sec ^{2} x \tan ^{2} x \\
& =\left|\tan x+\frac{1}{3} \tan ^{3} x\right| \\
& =\frac{4}{3} d x
\end{aligned}
$$

M1 for use of $\sec ^{2} x=1+\tan ^{2} x$ to split up the integral

A1 A1

NB Limits are ignored until the end, when numerical answers need to appear
Thus $I=\frac{\pi}{4}-\frac{1}{3}$
A1

M1 for appropriate splitting and attempted use of integration by parts
A1A1

M1 for use of $\tan ^{2} x=\sec ^{2} x-1$

M1
B1 for $\int \tan x d x=\ln (\sec x)$

A1
Thus $I=\frac{\pi^{2}}{32}-\left(\frac{\pi}{4}-\frac{1}{2} \ln 2\right)+\frac{\pi^{2}}{32}$

$$
=\frac{\pi^{2}}{16}-\frac{\pi}{4}+\frac{1}{2} \ln 2
$$

SI 2013 Mark Scheme Q5

(i) For $k=0: x^{2}+3 x+y^{2}+y=0$

$$
\begin{gathered}
\left(x+\frac{3}{2}\right)^{2}+\left(y+\frac{1}{2}\right)^{2}=\left(\frac{1}{2} \sqrt{10}\right)^{2} \\
\text { giving a CIRCLE } \\
\text { thro' }(0,0),(0,-1) \&(-3,0)
\end{gathered}
$$

M1 for completing the square for both x and y
G1 for a circle drawn
B1B1 passing thro' the origin; other 2 intercepts correct (noted on sketch or separately)
(ii) For $k=\frac{10}{3}:(3 x+y)(x+3 y+3)=0$
giving a LINE-PAIR
Lines $y=-3 x \quad \& \quad x+3 y=-3$
$1^{\text {st }}$ line thro' O with - ve gradient
B1 Must be the full thing (no marks for just factorising the given quadratic)
G1 for two (intersecting) lines drawn
Statement of eqns. not actually required
$2^{\text {nd }}$ line not thro' O with - ve gradient
B1
thro' $(0,-1) \&(-3,0)$
M1
A1
for both stated or noted on sketch
(iii) For $k=2:(x+y)^{2}+3 x+y=0$

When $\theta=45^{\circ}$,

$$
\begin{gathered}
x+y=X \sqrt{2} \text { and } y-x=Y \sqrt{2} \\
\Rightarrow \quad x=\frac{X-Y}{\sqrt{2}} \text { and } y=\frac{X+Y}{\sqrt{2}} \\
(x+y)^{2}+3 x+y=0 \text { becomes } \ldots \\
2 X^{2}+\frac{3 X-3 Y}{\sqrt{2}}+\frac{X+Y}{\sqrt{2}}=0 \\
\Rightarrow 2 X^{2}+2 \sqrt{2} X=Y \sqrt{2} \\
\Rightarrow(\sqrt{2} X+1)^{2}-1=Y \sqrt{2}
\end{gathered}
$$

noted or used anywhere

M1A1

M1 for eliminating both x and y for X and Y

M1A1 for completing the square; correct ANSWER GIVEN obtained

I curve correct
rple curve and blue line obviously otation thro' 45° of their red curve

LL correct (incl. thro' O)

If red curve does not appear ...
G3 for purple curve \& blue line correct
G1 for obviously rotated $45^{\circ} \mathrm{c} / \mathrm{w}$
G0 for anything else

5

SI 2013 Mark Scheme Q6

(*) \quad| Coefft. of x^{r} in $(1+x)^{n+1}$ is $\binom{n+1}{r}$ |
| :--- |
| Coefft. of x^{r} in $(1+x)(1+x)^{n}$ is from |
| $(1+x)\binom{n}{\ldots . .+\binom{n}{r-1} x^{r-1}+\binom{n}{r} x^{r}+\ldots .}$. |
| $\Rightarrow\binom{n+1}{r}=\binom{n}{r-1}+\binom{n}{r}$ |\quad A1 \quad GIVEN ANSWER legitimately obtained

For n even, writing $n=2 m \ldots$
M1 for attempting the even case

$$
\begin{aligned}
B_{2 m}+B_{2 m+1}= & \binom{2 m}{0}+\binom{2 m-1}{1}+\binom{2 m-2}{2}+\ldots . .+\binom{m+1}{m-1}+\binom{m}{m} \\
& +\binom{2 m+1}{0}+\binom{2 m}{1}+\binom{2 m-1}{2}+\binom{2 m-2}{3}+\ldots . .+\binom{m+1}{m}
\end{aligned}
$$

For n odd, writing $n=2 m+1 \ldots$
M1 for attempting the odd case

$$
\binom{2 m+1}{0}+\binom{2 m}{1}+\binom{2 m-1}{2}+\ldots . .+\binom{m+2}{m-1}+\binom{m+1}{m}
$$

$$
+\binom{2 m+2}{0}+\binom{2 m+1}{1}+\binom{2 m}{2}+\binom{2 m-1}{3}+\ldots . .+\binom{m+2}{m}+\binom{m+1}{m+1}
$$

$$
=\binom{2 m+2}{0}+\left[\binom{2 m+1}{0}+\binom{2 m+1}{1}\right]+\left[\binom{2 m}{1}+\binom{2 m}{2}\right]+\ldots . .+\left[\binom{m+2}{m-1}+\binom{m+2}{m}\right]+\left[\binom{m+1}{m}+\binom{m+1}{m+1}\right]
$$

$$
=\binom{2 m+3}{0}+\left[\binom{2 m+2}{1}\right]+\left[\binom{2 m+1}{2}\right]+\ldots \ldots+\left[\binom{m+3}{m}\right]+\binom{m+2}{m+1}
$$

M1 for use of first result, (*)
using the result ($*$) from above and since $\binom{2 m+2}{0}=\binom{2 m+3}{0}=1$
M1 for noting the equality of the

$$
\begin{aligned}
& =\binom{2 m+1}{0}+\left[\binom{2 m}{0}+\binom{2 m}{1}\right]+\left[\binom{2 m-1}{1}+\binom{2 m-1}{2}\right]+\ldots .+\left[\binom{m+1}{m-1}+\binom{m+1}{m}\right]+\binom{m}{m} \quad \mathbf{M 1} \quad \text { for suitable pairings (clear) } \\
& =\binom{2 m+2}{0}+\left[\binom{2 m+1}{1}\right]+\left[\binom{2 m}{2}\right]+\ldots . .\left[\binom{m+2}{m}\right]+\binom{m+1}{m+1} \mathbf{M 1} \quad \text { for use of first result, (*) } \\
& \text { using the result }(*) \text { from above and since }\binom{2 m+1}{0}=\binom{2 m+2}{0}=\binom{m}{m}=\binom{m+1}{m+1}=1 \\
& =\sum_{j=0}^{m+1}\binom{2(m+1)-j}{j}=B_{2 m+2} \\
& \text { M1 for noting the equality of the "1" } \\
& \text { A1 Legitimately shown }
\end{aligned}
$$

$$
=\sum_{j=0}^{m+1}\binom{2(m+1)+1-j}{j}=B_{2 m+3}
$$

$B_{0}, B_{1}=\binom{0}{0}\binom{1}{0}=1,1$
Evaluating $F_{0}, F_{1} \& F 2$

$$
\text { Statement that } B_{n}=F_{n+1}
$$

For a clear justification of result (e.g. inductively)

B1 Evaluating B_{0}, B_{1}
B1 Both sides must be evaluated, not just stated
B1 At any point
E1
(i.e. comment that since $B_{0}=F_{1}, B_{1}=F_{2}$ and $B_{n} \& F_{n}$ satisfy the same recurrence relation, we must have $B_{n}=F_{n+1}$ for all n)

SI 2013 Mark Scheme Q7

E1 Justification of ${ }_{\text {ve }}$ square-root required: $y>0$ when $x=1$ gives this
(ii) $y=u x$ used to get $u+x \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{u}+2 u$

B1
$\Rightarrow \int \frac{2 u}{1+u^{2}} \mathrm{~d} u=\int \frac{2}{x} \mathrm{~d} x$
M1 variables separated and integration attempted
$\Rightarrow \ln \left(1+u^{2}\right)=2 \ln x(+\ln A)$
$x=1, y=2$ substd. to determine A
$1+\frac{y^{2}}{x^{2}}=5 x^{2}$

$$
y=x \sqrt{5 x^{2}-1}
$$

for $x>\frac{1}{\sqrt{5}}$
A1
B1 FT sensible domains (provided $x>0$)

(ii) ALTERNATIVE

$$
\begin{aligned}
& y=u x^{2} \text { used to get } 2 u x+x^{2} \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{u x}+2 u x
\end{aligned} \quad \text { B1M1 } \frac{\mathrm{d} y}{\mathrm{~d} x} \text { correct (LHS); full substitution into given d.e. }
$$

SI 2013 Mark Scheme Q8


```
(ii) \(\operatorname{fg}(x)=|x|\) or \(\sqrt{x^{2}} \quad \mathbb{R} \quad y \geq 0\)
\(\operatorname{gf}(x)=|x|\) or \(\sqrt{x^{2}} \quad|x| \geq 1 \quad y \geq 1\)
```

B1 B1 Allow $\left\{\begin{array}{cc}x & x \geq 0 \\ -x & x<0\end{array}\right.$ but not or $\pm x$
B1 B1
In each case, $1^{\text {st }} \mathrm{B} 1$ for the $\mathrm{fn} . \&{ }^{\text {nd }} \mathrm{B} 1$ for both domain and range
OR $1^{\text {st }} \mathrm{B} 1$ for both domains correct, $2^{\text {nd }} \mathrm{B} 1$ for both ranges correct
(iii) $\quad y=\mathrm{h}(x)=x+\sqrt{x^{2}-1}, x \geqslant 1$

$$
\begin{gathered}
y=\mathrm{k}(x)=x-\sqrt{x^{2}-1},|x| \geq 1 \\
y
\end{gathered}
$$

G1 Starts at $(1,1)$ - noted or clear on sketch

G1 Going upwards $(\rightarrow \infty)$
G1 Approaching asymptote $y=2 x$ (eqn. must be given somewhere)

NB - I will correct the diagram so it is the graph of a function

G1 Two branches

G1 $(1,1)$ and $(-1,-1)$ noted or clear on sketch
G1 Branch in Q1 approaches (from above) asymptote $y=0$ (or " x-axis") must be noted
x somewhere
G1 Branch in Q3 approaches asymptote (from above) $y=2 x$ must be noted somewhere

Range of h is $y \geq 1 \Rightarrow$ Range of kh is $0<y \leq 1 \quad$ M1A1

